Optimization of Stope Structural Parameters Based on Mathews Stability Graph Probability Model

Author:

Zhang Long1ORCID,Hu Jian-hua1ORCID,Wang Xue-liang2,Zhao Lei2

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

2. Hubei Sanning Mining Co., Ltd., Yichang, Hubei 443100, China

Abstract

Strip mining with subsequent filling is one of the main mining methods for gently inclined thin ore bodies. The production process of excavating alternate strips is beneficial to the safety of mining. Reasonable stope structural parameters are key to achieving safe and efficient mining. The Tiaoshuihe phosphate mine of Sanning Mining is taken as an example in this study. Based on precision finite element modeling and simulation, a reasonable width range and the interval value of the strip are determined. A reliable and efficient strip width is calculated by using the probability model of the improved Mathews stability graph method. The results show the following. Firstly, under the geological conditions and backfill environment of the Tiaoshuihe phosphate mine, the reasonable and safe strip width interval is 7–9 m. Secondly, the probabilities of open stope stability with strip widths of 7, 8, and 9 m are 88.55%, 86.76%, and 84.94%, respectively. The reasonable probabilities of stope stability with strip widths of 7 and 8 m are higher than 85%. Thirdly, combining this with the drilling equipment operation parameters, it is suggested that the best strip width is 7 m without increasing the strength of the backfill.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3