Hybrid Filtered-x Adaptive Vibration Control with Internal Feedback and Online Identification

Author:

Yang Lihua1ORCID,Liu Shuyong2,Zhang Haipeng1,Wu Haiping1,Li Haifeng1,Jiang Jian3

Affiliation:

1. Power Control Department, Navy Submarine Academy, Qingdao 266199, China

2. College of Power Engineering, Naval University of Engineering, Wuhan 430033, China

3. Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Active control is an effective way to suppress low-frequency mechanical vibration. However, with applications to submarine equipment, there are still some shortcomings due to vibration coupling and multifrequency complex excitation. In this paper, a novel hybrid improved adaptive control strategy, feedback and online identification filtered-x LMS, namely, FOFxlms, is proposed, which introduces the residual errors to correct variable step-size, uses the estimated primary path to improve online identification, and applies internal feedback to compensate for the feedforward control. Then the FOFxlms algorithm is applied to a double-layer vibration isolation system of submarine rotating equipment, and the simulation results show that the normalized variable step-size with residual error can effectively improve convergence speed, the internal feedback can efficaciously compensate for steady-state control accuracy, and the online identification can dynamically identify the time-varying characteristics of the secondary path. The vibration reduction efficiency of Fxlms, FFxlms, and FOFxlms increases for the fundamental frequency vibration; the control effect and convergence speed are also enhanced in turn.

Funder

Shanghai Jiao Tong University

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3