Influence Mechanism of Rubber Thermal Oxygen Aging on Dynamic Stiffness and Loss Factor of Rubber Isolation Pad

Author:

Chen Junjie1ORCID,Li Xian12,Chen Changyao1,Yang Chaofeng3,Gao Xiangdong1ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science & Engineering, Donghua University, Shanghai 201620, China

3. Anhui Zhongding NVH Co., Ltd., Ningguo 242300, China

Abstract

The influence mechanism of thermal oxygen aging on the dynamic characteristic of the rubber isolation pad (RIP) is usually ignored in studies. However, the ambient temperature of the RIP could reach up to 70°C in general, and even 108°C under some extreme conditions, which will lead to accelerated thermal oxygen aging and a decline in the mechanical performance for the RIP. In the meantime, the thermal oxygen aging will result in excessive vibration and even a damaged external air conditioner. Therefore, the research on the influence mechanism of rubber thermal oxygen aging on the dynamic performances of the RIP is crucial to the mechanical characteristic matching of the RIP. Considering the effect of the thermal oxygen aging on the dynamic characteristic, a novel model of thermal oxygen aging-dynamic characteristic of the RIP is established by adopting the Peck model, the hyperelastic model, the fractional derivative model, and the smooth Coulomb friction model (SCFM) in this paper. A test rig of the static and dynamic characteristics of the RIP is built, and an identification method of model parameters is developed based on the MTS831 elastomer test system as well which of the thermal oxygen aging-dynamic characteristic model is verified by the experimental data. The result is shown that the maximum growth rate of the static stiffness and the dynamic stiffness is 20.7% and 4.5%, respectively, and the maximum decrease rate of the loss factor is 10.6% as the thermal oxygen aging hardness of the RIP increases by 5HA. The amplitude-dependent, frequency-dependent, and thermal oxygen aging-dependent performances of the RIP are effectively characterized by the thermal oxygen aging-dynamic characteristic model. Moreover, a theoretical foundation is provided for the evolution law of the dynamic characteristic of the RIP after the service with the thermal oxygen aging condition in this research.

Funder

Special Project of Central Government for Local Science and Technology Development of Hubei Province

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3