The Role of Knowledge Creation-Oriented Convolutional Neural Network in Learning Interaction

Author:

Zhang Hongyan12ORCID,Luo Xiaoguang1

Affiliation:

1. School of Economics and Management, Harbin University of Science and Technology, Harbin, Heilongjiang, China

2. Department of Management, Harbin Finance University, Harbin, Heilongjiang, China

Abstract

When convolutional neural network (CNN) applications have different tasks in the source domain and target domain, but both have labels, it is easy to ignore the difference between the source domain and target domain by using the current traditional method, and the recognition effect of image features is not ideal. This paper proposes a deep migration learning method based on improved ResNet based on existing research to avoid this problem. This method extracts high-order statistical features of images by increasing the number of network layers for classification when performing model transfer learning. The ImageNet dataset is used as the source domain, and a Deep Residual Network (DRN) is used for model transfer based on homogeneous data. Firstly, the ResNet model is pretrained. Then, the last fully connected layer of the source model is modified, and the final deep model is constructed by fine-tuning the network by adding an adjustment module. The impact of content differences between datasets on recognizing transfer learning features is reduced through model transfer and deep feature extraction. The deep transfer learning methods after improving ResNet are compared through experiments. The identification algorithm is based on Support Vector Machine (SVM), the deep transfer learning method on Visual Geometry Group (VGG)-19, and the deep transfer learning method based on Inception-V3. Four experiments are performed on MNIST and CIFAR-10 datasets. By analyzing the experimental data, ResNet’s improved deep transfer learning method achieves 97.98% and 90.45% accuracy on the MNIST and CIFAR-10 datasets, and 95.33% and 85.07% on the test set. The accuracy and recognition accuracy on the training and test sets have been improved to a certain extent. The combination of CNN and transfer learning can effectively alleviate the difficulty of obtaining labeled data. Therefore, the application of a CNN in transfer learning is significant.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MICORD-IDS: A Hybrid Learning System for Intrusion Detection System for the Internet of Vehicles;2024 7th International Conference on Information and Computer Technologies (ICICT);2024-03-15

2. Detection of Katokkon Chili Maturity using Convolutional Neural Network with Transfer Learning Model DenseNet169;2023 International Workshop on Artificial Intelligence and Image Processing (IWAIIP);2023-12-01

3. Efficient, Lightweight Cyber Intrusion Detection System for IoT Ecosystems Using MI2G Algorithm;Computers;2022-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3