Fitness-Based Grey Wolf Optimizer Clustering Method for Spam Review Detection

Author:

Shringi Sakshi1ORCID,Sharma H.1ORCID,Suthar D. L.2ORCID

Affiliation:

1. Department of Computer Science and Engineering, Rajasthan Technical University, Kota, India

2. Department of Mathematics, Wollo University, P.O. Box 1145, Dessie, Ethiopia

Abstract

Customers nowadays rely heavily on online reviews when making buying decisions. Various internet websites, including Amazon, Yelp, Google Plus, BookMyShow, Facebook, Twitter, and others, allow users to generate massive amounts of data. The information is gathered through feedback/reviews, comments, and tweets. Companies can leverage this information to improve the quality of their products. Spam reviews are created pretentiously by some businesses and people to promote or degrade the popularity of any product, organization, or person due to their reliance on these online reviews. Thus, identifying spam or nonspam review by the naked eye is nearly impossible. Classifying the reviews manually is also highly speculative. Hence, to overcome this issue, a fitness-based Grey Wolf Optimizer (FGWOK) clustering method is proposed in this paper to identify spam reviews. The fitness-based grey wolf optimization (GWO) is used to obtain the optimal cluster heads in the proposed method. In the fitness-based GWO, the position of the grey wolves is updated in two phases. In the first phase, all the search agents update their position using the contemporary GWO, and in the second phase, the fitness is evaluated to update the position. To prove that the proposed strategy is effective, three spam data sets, namely synthetic spam reviews, movie reviews, and Yelp hotel and restaurant reviews, have been used in our work. The reported results are compared with the existing state-of-art metaheuristic clustering methods like a genetic algorithm (GA), differential evolution (DE), particle swarm optimization (PSO), cuckoo search (CS), k-Means, and artificial bee colony clustering (ABCK) method. The experimental and statistical analysis results show that the proposed FGWOK algorithm outperforms current methodologies.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3