Deep Learning Approach for Building Detection Using LiDAR–Orthophoto Fusion

Author:

Nahhas Faten Hamed1,Shafri Helmi Z. M.12ORCID,Sameen Maher Ibrahim3,Pradhan Biswajeet3ORCID,Mansor Shattri12

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

2. Geospatial Information Science Research Center (GISRC), Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor, Malaysia

3. Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, Australia

Abstract

This paper reports on a building detection approach based on deep learning (DL) using the fusion of Light Detection and Ranging (LiDAR) data and orthophotos. The proposed method utilized object-based analysis to create objects, a feature-level fusion, an autoencoder-based dimensionality reduction to transform low-level features into compressed features, and a convolutional neural network (CNN) to transform compressed features into high-level features, which were used to classify objects into buildings and background. The proposed architecture was optimized for the grid search method, and its sensitivity to hyperparameters was analyzed and discussed. The proposed model was evaluated on two datasets selected from an urban area with different building types. Results show that the dimensionality reduction by the autoencoder approach from 21 features to 10 features can improve detection accuracy from 86.06% to 86.19% in the working area and from 77.92% to 78.26% in the testing area. The sensitivity analysis also shows that the selection of the hyperparameter values of the model significantly affects detection accuracy. The best hyperparameters of the model are 128 filters in the CNN model, the Adamax optimizer, 10 units in the fully connected layer of the CNN model, a batch size of 8, and a dropout of 0.2. These hyperparameters are critical to improving the generalization capacity of the model. Furthermore, comparison experiments with the support vector machine (SVM) show that the proposed model with or without dimensionality reduction outperforms the SVM models in the working area. However, the SVM model achieves better accuracy in the testing area than the proposed model without dimensionality reduction. This study generally shows that the use of an autoencoder in DL models can improve the accuracy of building recognition in fused LiDAR–orthophoto data.

Funder

Universiti Putra Malaysia

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3