Deep Learning Based Tongue Prickles Detection in Traditional Chinese Medicine

Author:

Wang Xinzhou12,Luo Siyan34,Tian Guihua5,Rao Xiangrong3ORCID,He Bin1,Sun Fuchun2ORCID

Affiliation:

1. College of Electronic and Information Engineering, Tongji University, Shanghai 200092, China

2. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

3. Guang’Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China

4. Beijing University of Chinese Medicine, Beijing 100029, China

5. Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China

Abstract

Tongue diagnosis is a convenient and noninvasive clinical practice of traditional Chinese medicine (TCM), having existed for thousands of years. Prickle, as an essential indicator in TCM, appears as a large number of red thorns protruding from the tongue. The term “prickly tongue” has been used to describe the flow of qi and blood in TCM and assess the conditions of disease as well as the health status of subhealthy people. Different location and density of prickles indicate different symptoms. As proved by modern medical research, the prickles originate in the fungiform papillae, which are enlarged and protrude to form spikes like awn. Prickle recognition, however, is subjective, burdensome, and susceptible to external factors. To solve this issue, an end-to-end prickle detection workflow based on deep learning is proposed. First, raw tongue images are fed into the Swin Transformer to remove interference information. Then, segmented tongues are partitioned into four areas: root, center, tip, and margin. We manually labeled the prickles on 224 tongue images with the assistance of an OpenCV spot detector. After training on the labeled dataset, the super-resolutionfaster-RCNN extracts advanced tongue features and predicts the bounding box of each single prickle. We show the synergy of deep learning and TCM by achieving a 92.42% recall, which is 2.52% higher than the previous work. This work provides a quantitative perspective for symptoms and disease diagnosis according to tongue characteristics. Furthermore, it is convenient to transfer this portable model to detect petechiae or tooth-marks on tongue images.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3