Prediction of Protein-Protein Interaction Sites by Multifeature Fusion and RF with mRMR and IFS

Author:

Zhang JunYan12,Lyu Yinghua1ORCID,Ma Zhiqiang1

Affiliation:

1. School of Information Science and Technology, Northeast Normal University, Changchun, 130024 Jilin, China

2. Graduate School, Northeast Normal University, Changchun 130024, Jilin, China

Abstract

Prediction of protein-protein interaction (PPI) sites is one of the most perplexing problems in drug discovery and computational biology. Although significant progress has been made by combining different machine learning techniques with a variety of distinct characteristics, the problem still remains unresolved. In this study, a technique for PPI sites is presented using a random forest (RF) algorithm followed by the minimum redundancy maximal relevance (mRMR) approach, and the method of incremental feature selection (IFS). Physicochemical properties of proteins and the features of the residual disorder, sequence conservation, secondary structure, and solvent accessibility are incorporated. Five 3D structural characteristics are also used to predict PPI sites. Analysis of features shows that 3D structural features such as relative solvent-accessible surface area (RASA) and surface curvature (SC) help in the prediction of PPI sites. Results show that the performance of the proposed predictor is superior to several other state-of-the-art predictors, whose average prediction accuracy is 81.44%, sensitivity is 82.17%, and specificity is 80.71%, respectively. The proposed predictor is expected to become a helpful tool for finding PPI sites, and the feature analysis presented in this study will give useful insights into protein interaction mechanisms.

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3