Optimization of an Intelligent Sorting and Recycling System for Solid Waste Based on Image Recognition Technology

Author:

Chen Haitao1ORCID

Affiliation:

1. CNPC Chuanqing Drilling Engineering Co., Ltd., Chengdu 610000, China

Abstract

In this paper, the technique of image recognition algorithm is used to conduct an in-depth study and analysis of the intelligent classification and recycling system of solid waste and to optimize the design of its system. The network structure and detection principle of the YOLO target detection algorithm based on convolutional neural nets are analysed, images of construction solid waste are collected as a dataset, and the image dataset is expanded using data enhancement techniques, and the target objects in the dataset are labelled and used to train their own YOLO detection models. To facilitate testing the images and to design a YOLO algorithm-based construction solid waste target detection system. Using the detection system for construction solid waste recognition, the YOLO model can accurately detect the location, class, and confidential information of the target object in the image. Image recognition is a technique to recognize images by capturing real-life images through devices and performing feature extraction, and this technique has been widely used since its inception. The deep learning-based classification algorithm for recyclable solid waste studied in this paper can classify solid waste efficiently and accurately, solving the problem that people do not know how to classify solid waste in daily life. The convolutional layer, pooling layer, and fully connected layer in a convolutional neural network are responsible for feature extraction, reducing the number of parameters, integrating features into high-level features, and finally classifying them by SoftMax classifier in turn. However, the actual situation is intricate and often the result is not obtained as envisioned, and the use of migration learning can be a good way to improve the overfitting phenomenon. In this paper, the combination of lazy optimizer and lookahead can improve the generalization ability and fitting speed as well as greatly improve the accuracy and stability. The experimental results are tested, and it is found that the solid waste classification accuracy can be as high as 95% when the VGG19 model is selected and the optimizer is combined.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An intelligent identification and classification system of decoration waste based on deep learning model;Waste Management;2024-02

2. Automated Control System of a Modular Robot Manipulator for Sorting Objects Based on Neural Networks;2023 5th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA);2023-11-08

3. An Improved Model of Product Classification Feature Extraction and Recognition Based on Intelligent Image Recognition;Computational Intelligence and Neuroscience;2022-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3