Impact of Driver Compliance and Aggressiveness in Connected Vehicles on Mixed Traffic Flow Efficiency: A Simulation Study

Author:

Qian Chenhao1ORCID,Feng Taojun2,Li Zhiyuan2,Ye Yanjun1,Yang Shengwen1ORCID

Affiliation:

1. College of Machinery and Transportation, Southwest Forestry University, Kunming 650000, China

2. Power China Sichuan Electric Power Engineering Co., Ltd., Chengdu 610016, China

Abstract

Connected vehicles (CVs) are becoming increasingly prevalent in today’s transportation systems, and understanding their behavior in mixed traffic flow is crucial for enhancing traffic efficiency and safety. This paper presents a comprehensive study investigating the impact of CV drivers’ compliance and aggressiveness on mixed traffic flow through simulation experiments. The unique contribution of this research lies in the adoption of a clustering method to classify CV drivers’ compliance and aggressiveness based on trajectory data captured by Unmanned Aerial Vehicles (UAVs). This approach allows for the accurate calibration of car-following and lane-changing models, surpassing previous methodologies. The study outlines two primary methods: the intelligent driver model (IDM) with driver compliance (CVs-IDM) and the lane-change 2013 model with drivers’ style. These methods are applied to simulate various scenarios of mixed traffic flow, considering different CV penetration rates and driver types. The pivotal findings reveal that higher CV penetration rates lead to reduced traffic flow disturbance, improved safety, and enhanced efficiency. Specifically, CV drivers exhibiting high compliance and normal aggressiveness demonstrate optimal performance in terms of disturbance reduction, safety, and overall efficiency. This research offers valuable insights for policymakers and practitioners. It recommends increasing the CV penetration rate in mixed traffic flow to enhance overall efficiency. Moreover, selecting the appropriate CV driver type based on the penetration rate can further optimize traffic flow, positively impacting transportation systems and promoting safer and more efficient mixed traffic environments.

Funder

Yunnan Provincial Department of Education Science Research Fund Project

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3