Heterogeneous Signal Fusion Method in Driving Fatigue Detection Signals

Author:

Wang Qingjun12ORCID,Mu Zhendong3ORCID

Affiliation:

1. Shenyang Aerospace University, Shenyang 110136, China

2. Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

3. The Center of Collaboration and Innovation, Jiangxi University of Technology, Nanchang 330098, China

Abstract

Driving fatigue is a physiological phenomenon that often occurs during driving. When the driver enters a fatigue state, they will become distracted and unresponsive, which can easily lead to traffic accidents. The driving fatigue detection method based on a single information source has poor stability in a specific driving environment and has great limitations. This work helps with being able to judge the fatigue state of the driver more comprehensively and achieving a higher accuracy rate of driving fatigue detection. This work mainly introduces research into different signal fusion methods to detect fatigue drive. This work will take the normal driver’s breathing signal, eye signals, and steering wheel signal as research objects and collect and isolate the characteristics of the fatigue detection signal. Research was then conducted on different signal fusion methods for the detected depth of breath. Change of steering angle, eyelid closure, and blinking marks and the fatigue driving experiment was designed to evaluate the results of different data fusion methods. Experimental results show that the detection accuracy of the heterogeneous signal fusion method in fatigue detection is as high as 80%.

Funder

Education Department of Jiangxi Province

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Reference30 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3