Online Monitoring and Early Warning of Subsynchronous Oscillation Using Levenberg–Marquardt and Backpropagation Algorithm Combined with Sensitivity Analysis and Principal Component Analysis

Author:

Wu Lingjie1ORCID,Zhou Ming1ORCID,Wang Yanwen1ORCID,Wang Le1ORCID,Tian Xu1ORCID

Affiliation:

1. School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing 100083, China

Abstract

Over the past few years, with the access of large-scale new energy sources, the problem of subsynchronous oscillation (SSO) in power systems has presented a novel multisource and multitransformation form, which may be significantly threatening. Conventional control and protection methods primarily give rise to device protection actions in the presence of severe oscillation. On the whole, online monitoring only identifies the frequency and amplitude, whereas it cannot identify the attenuation factor. Moreover, the determination of the warning threshold is more dependent on human experience, so the reliability and rapidity of the early warning cannot be ensured. This study conducts an in-depth investigation of the wind-thermal power bundling and extreme high-voltage alternating current- (AC-) direct current (DC) hybrid transmission system. The major factors of SSO using this system are unclear, which brings difficulties to effective monitoring. Given the mentioned problems, a method combining Levenberg–Marquardt- (LM-) Backpropagation (BP) machine learning and Sensitivity Analysis (SA) and principal component analysis (PCA) is developed. First, the sensitivity analysis of each factor in the system is conducted to identify the major factors of SSO. Subsequently, the historical sample data are reduced with the principal component analysis to reduce the redundancy, which is adopted to train the regression model to determine the attenuation factor and frequency and then send them to the classifier for classification to complete the task of the assessment model. When a novel data signal is uploaded, the assessment model identifies the attenuation factor and frequency and subsequently determines the presence of SSO. Accordingly, an early warning is conducted. The system's refined simulation model and machine learning model verify the effectiveness of the method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference22 articles.

1. Discussion on the power quality of large-scale cluster wind power connected to the power grid;S. He;Power System Protection and Control,2013

2. Experience with HVDC - Turbine-Generator Torsional Interaction at Square Butte

3. Review of sub-synchronous oscillation with large-scale wind power transmission;T. Bi;Journal of Electric Power Science and Technology,2012

4. Overview of emerging subsynchronous oscillations in practical wind power systems

5. Mitigating subsynchronous control interaction in wind power systems: Existing techniques and open challenges

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3