ARES: A Parallel Discrete Ordinates Transport Code for Radiation Shielding Applications and Reactor Physics Analysis

Author:

Chen Yixue1ORCID,Zhang Bin1ORCID,Zhang Liang1ORCID,Zheng Junxiao1ORCID,Zheng Ying1,Liu Cong1ORCID

Affiliation:

1. North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206, China

Abstract

ARES is a multidimensional parallel discrete ordinates particle transport code with arbitrary order anisotropic scattering. It can be applied to a wide variety of radiation shielding calculations and reactor physics analysis. ARES uses state-of-the-art solution methods to obtain accurate solutions to the linear Boltzmann transport equation. A multigroup discretization is applied in energy. The code allows multiple spatial discretization schemes and solution methodologies. ARES currently provides diamond difference with or without linear-zero flux fixup, theta weighted, directional theta weighted, exponential directional weighted, and linear discontinuous finite element spatial differencing schemes. Discrete ordinates differencing in angle and spherical harmonics expansion of the scattering source are adopted. First collision source method is used to eliminate or mitigate the ray effects. Traditional source iteration and Krylov iterative method preconditioned with diffusion synthetic acceleration are applied to solve the linear system of equations. ARES uses the Koch-Baker-Alcouffe parallel sweep algorithm to obtain high parallel efficiency. Verification and validation for the ARES transport code system have been done by lots of benchmarks. In this paper, ARES solutions to the HBR-2 benchmark and C5G7 benchmarks are in excellent agreement with published results. Numerical results are presented which demonstrate the accuracy and efficiency of these methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3