Mechanism of Abnormal Chondrocyte Proliferation Induced by Piezo1-siRNA Exposed to Mechanical Stretch

Author:

Sun Yi1ORCID,Leng Ping2ORCID,Li Dawei1ORCID,Gao Huanshen1ORCID,Li Zhenghui1ORCID,Li Chenkai1ORCID,Zhang Haining1ORCID

Affiliation:

1. Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China

2. Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China

Abstract

Objective. To investigate the effect of small interfering RNA targeting mechanosensitive ion channel protein Piezo1 (Piezo1-siRNA) on abnormal chondrocyte proliferation exposed to mechanical stretch. Methods. Construct and screen effective Piezo1-siRNA sequences and explore an appropriate method to transfect lentiviral vector into chondrocytes exposed to mechanical stretch. Western blot and RT-PCR were used to detect the mRNA and protein expression of Piezo1, Kif18A, and β-tubulin, respectively. Flow cytometry was used to measure the changes in the chondrocyte cycle. The proliferation of chondrocyte was evaluated by cell counting kit-8. Results. According to the mRNA and protein expression of Piezo1, the effective siRNA sequence was successfully screened. Compared with the 0 h group, mechanical stretch upregulated the expression of Piezo1, Kif18A, and β-tubulin, resulting in chondrocyte cycle arrest and eventually inhibiting chondrocyte proliferation. Moreover, Piezo1-siRNA transfection effectively blocks this process and promotes the proliferation of chondrocyte. Conclusion. Piezo1-siRNA can reduce the inhibition of chondrocyte proliferation induced by mechanical stretch via downregulating the expression of Kif18A and inhibiting the depolymerization of microtubules. Piezo1-siRNA plays a protective role in chondrocytes, which provides a potential method for the treatment of OA under abnormal mechanical stimulation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3