Affiliation:
1. Ericsson Research, 164 80 Stockholm, Sweden
2. Automatic Control Lab, Royal Institute of Technology, 100 44 Stockholm, Sweden
Abstract
We consider the problem of setting the uplink signal-to-noise-and-interference (SINR) target and allocating transmit powers for mobile stations in multicell spatial multiplexing wireless systems. Our aim is twofold: to evaluate the potential of such mechanisms in network multiple input multiple output (MIMO) systems, and to develop scalable numerical schemes that allow real-time near-optimal resource allocation across multiple sites. We formulate two versions of the SINR target and power allocation problem: one for maximizing the sum rate subject to power constraints, and one for minimizing the total power needed to meet a sum-rate target. To evaluate the potential of our approach, we perform a semianalytical study inMathematicausing the augmented Lagrangian penalty function method. We find that the gain of the joint optimum SINR setting and power allocation may be significant depending on the degree of fairness that we impose. We develop a numerical technique, based on successive convexification, for real-time optimization of SINR targets and transmit powers. We benchmark our procedure against the globally optimal solution and demonstrate consistently strong performance in realistic network MIMO scenarios. Finally, we study the impact of near optimal precoding in a multicell MIMO environment and find that precoding helps to reduce the sum transmit power while meeting a capacity target.
Subject
Electrical and Electronic Engineering,Media Technology,Communication
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献