Matching Subsequence Music Retrieval in a Software Integration Environment

Author:

Li Zhencong1ORCID,Yao Qin1ORCID,Ma Wanzhi2ORCID

Affiliation:

1. School of Music and Dance, Ningxia Normal University, Guyuan, Ningxia 756000, China

2. Department of Educational and Culture Contents Development, Woosuk University, Jeonju 55338, Republic of Korea

Abstract

This paper firstly introduces the basic knowledge of music, proposes the detailed design of a music retrieval system based on the knowledge of music, and analyzes the feature extraction algorithm and matching algorithm by using the features of music. Feature extraction of audio data is the important research of this paper. In this paper, the main melody features, MFCC features, GFCC features, and rhythm features, are extracted from audio data and a feature fusion algorithm is proposed to achieve the fusion of GFCC features and rhythm features to form new features under the processing of principal component analysis (PCA) dimensionality reduction. After learning the main melody features, MFCC features, GFCC features, and rhythm features, based on the property that PCA dimensionality reduction can effectively reduce noise and improve retrieval efficiency, this paper proposes vector fusion by dimensionality reduction of GFCC features and rhythm features. The matching retrieval of audio features is an important task in music retrieval. In this paper, the DTW algorithm is chosen as the main algorithm for retrieving music. The classification retrieval of music is also achieved by the K-nearest neighbor algorithm. In this paper, after implementing the research and improvement of algorithms, these algorithms are integrated into the system to achieve audio preprocessing, feature extraction, feature postprocessing, and matching retrieval. This article uses 100 different kinds of MP3 format music as the music library and randomly selects 4 pieces each time, and it tests the system under different system parameters, recording duration, and environmental noise. Through the research of this paper, the efficiency of music retrieval is improved and theoretical support is provided for the design of music retrieval software integration system.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Retracted: Matching Subsequence Music Retrieval in a Software Integration Environment;Complexity;2024-01-24

2. Information Retrieval Method of Professional Music Teaching Based on Hidden Markov Model;2022 14th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA);2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3