Cylindrical Caved Space Stability Analysis for Extension Prediction of Mining-Induced Surface Subsidence

Author:

Liu Yang12ORCID,Ge Yongxiang1,Zhang Congrui12,Ren Fengyu3,Ma Junsheng4,Ren Gaofeng12ORCID

Affiliation:

1. School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China

2. Key Laboratory of Mineral Resources Processing and Environment of Hubei Province, Wuhan University of Technology, Wuhan, Hubei 430070, China

3. School of Resources and Civil Engineering, Northeastern University, Shenyang, Liaoning 110819, China

4. China Enfi Engineering Corporation, Beijing 100038, China

Abstract

Subsequent extension of surface subsidence after vertical caving leads to large-scale surface destruction, as well as associated geological hazards. The extension prediction for cylindrical caved space, which appears circular surface subsidence, is still an intractable issue, due to the absence of robust models. To fill such a research gap, this paper provides an analytical model for the depth and orientation where the shear failure of isotropic rocks around the caved space is firstly observed. The anisotropy of surrounding rocks is further involved to enable this model to analyze the slip failure along discontinuities in anisotropic stress state. The prediction for the extension of the surface subsidence in Xiaowanggou iron mine is conducted, and the comparison between the prediction and the observation in satellite images demonstrates the validity of the proposed model. Even though this model cannot provide a definite boundary after extension, the prediction for the orientation surface subsidence extends to contribute to mitigating the effect of geological hazards. Another contribution of this work is to provide guidance to mitigate the impact of surface subsidence on safety and environment, such as filling the interspace between large-sized caved rocks by dumping small-sized waste rocks or backfilling the caved space with waste rocks.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3