The Investigation on Color Purity of Blue Organic Light-Emitting Diodes (BOLED) by Hole-Blocking Layer

Author:

Chen Kan-Lin1,Huang Chien-Jung2,Chen Wen-Ray3,Kang Chih-Chieh4ORCID,Lan Wen-How5,Lee Yu-Chen2

Affiliation:

1. Department of Electronic Engineering, Fortune Institute of Technology, Kaohsiung 83160, Taiwan

2. Department of Applied Physics, National University of Kaohsiung, Kaohsiung 81148, Taiwan

3. Department of Electronic Engineering, National Formosa University, Huwei, Yunlin 63201, Taiwan

4. Department of Electro-Optical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan

5. Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan

Abstract

Organic light-emitting diodes (OLEDs) with triple hole-blocking layer (THBL) structure, which consist of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 4,4′-bis(2,2′diphenyl vinil)-1,1′-biphenyl (DPVBi), and (4,4′-N,N′-dicarbazole)biphenyl (CBP), have been fabricated. Regardless of applied voltage variation, the luminous efficiency of the OLEDs with THBL structure was increased by 41% as compared with the dual hole-blocking layer (DHBL) structure. The CIE coordinates of (0.157, 0.111) of device with THBL structure are close to pure blue emission than that of other devices of DHBL. There is a coordinate with the slight shift of±Δx,y= (0.001, 0.008) for the device with THBL structure during the applied voltage of 6–9 V. The results indicate that the excitons can be effectively confined in the emitting layer of device, leading to an enhancement of luminance efficiency and more stable coordinate.

Funder

National Science Council

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3