Mechanical, Durability, and Microstructure Investigations on High-Strength Concrete Incorporating Nanosilica, Multi-Walled Carbon Nanotubes, and Steel Fibres

Author:

Sumathi A.1ORCID,Elavarasi D.1ORCID,Karthikeyan B.1ORCID,Shobana P.1,Selvaraj Senthil Kumaran2ORCID,Dewangan Saurabh3,Molla Baye4ORCID

Affiliation:

1. School of Civil Engineering, SASTRA Deemed to be University, Thanjavur 613401, India

2. Department of Manufacturing Engineering, School of Mechanical Engineering (SMEC), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India

3. Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India

4. School of Mechanical Engineering, Engineering and Technology College, Dilla University, P.O. Box. 419, Dilla, Ethiopia

Abstract

In present research, the strength properties, impact resistance, and durability characteristics of high-strength concrete blended with nanosilica (NS) and reinforced with multi-walled carbon nanotubes (MWCNTs) are discussed. The proportion consists of nanosilica added in a constant addition of 1% and MWCNT added in a varied dosage of 0.025%, 0.05%, 0.1%, 0.15%, and 0.2% by weight of the cement. A total of 11 mixes were made including the control mix having no MWCNT. The other 10 mixes were categorized into two classes with one class having steel fibres incorporated as 1% of the total volume of the concrete along with the other ingredients such as 1% NS and different proportions of MWCNT. The other class was made without steel fibres retaining only the NS and different MWCNT proportions. Besides the standard compression and tension tests, to determine the energy absorbing capacity of the mix specimens, impact test was also performed. The strength tests were carried out for 3, 7, and 28-day curing. Also, durability tests were carried out with sorptivity, porosity, and mass loss of the specimens when exposed to aggressive HCL and H2SO4 acid. To validate the experiment results, microstructure studies such as scanning electron microscopy (SEM) were also conducted on the samples. Among all mixes, 28-day compressive strength (CS) of 0.2% MWCNT with 1% NS and 1% steel fibre mix was found to increase by 22% compared to control concrete.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3