Stability of SDE-LJN System in the Internet to Mitigate Constant-Rate DDoS Attacks

Author:

Huang Kaijiao1ORCID,Tan Liansheng12ORCID,Peng Gang3

Affiliation:

1. Department of Computer Science, Central China Normal University, Wuhan 430079, China

2. College of Science and Engineering, University of Tasmania, Hobart, TAS 7001, Australia

3. School of Computer Science, Shenzhen Institute of Information Technology, Shenzhen 518172, China

Abstract

The Internet is nowadays suffering dramatically serious attacks, with the distributed denial of service (DDoS) attacks being the representative and dominant ones. It is seen that, to stabilize the buffer queue length around a given target under DDoS attacks in the relevant routes is vitally important and helpful to mitigate the attacks and to improve the quality of service (QoS) for normal users. In the current paper, a stochastic queue dynamic model with L e ´ vy jump noise, which is affected by the continuous Brownian motion and the discontinuous Poisson process, is worked out to develop a novel and accurate mathematical framework for the stability of a route queue that deals with constant-rate DDoS attacks. This article proposes a security defensive mechanism in the network for solving the network collapse that can possibly be caused by DDoS attacks, otherwise. Particularly, based on the formulation of a stochastic queue dynamic with L e ´ vy jump noise, the mechanism that characterizes the behavior of the queue at routers is presented for stabilizing the queue length under constant-rate DDoS attacks. By applying the stochastic control theory into analyzing the performance of queue dynamic under constant-rate DDoS attacks, some explicit conditions are established under which the instantaneous queue length converges to any given target in a route. Simulation results demonstrate the satisfaction of the proposed defense mechanism with sharp contrast to the state of the art active queue management (AQM) schemes.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3