A Comprehensive Bioinformatic Analysis of NOTCH Pathway Involvement in Stomach Adenocarcinoma

Author:

Xue Dongyun1ORCID,Li Dong1ORCID,Dou Cong2ORCID,Li Junshan1ORCID

Affiliation:

1. Department of Gastroenterology, Shandong Provincial Third Hospital, Cheeloo College of Medicine Affiliated to Shandong University, Jinan City, Shandong Province, China

2. Department of Gastroenterology, Zhucheng People’s Hospital, Zhucheng, Shandong, China

Abstract

Background. Activation of NOTCH signaling pathways, which are key regulators of multiple cellular functions, has been frequently implicated in cancer pathogenesis, and NOTCH inhibitors have received much recent focus in the context of cancer therapeutics. However, the role and possible involvement of NOTCH pathways in stomach adenocarcinoma (STAD) are unclear. Here, putative regulatory mechanisms and functions of NOTCH pathways in STAD were investigated. Methods. Publicly available data from the TCGA-STAD database were utilized to explore the involvement of canonical NOTCH pathways in STAD by analyzing RNA expression levels of NOTCH receptors, ligands, and downstream genes. Statistical analysis of the data pertaining to cancer and noncancerous samples was performed using R software packages and public databases/webservers. Results. Significant differential gene expression between control and STAD samples was noted for all NOTCH receptors (NOTCH1, 2, 3, and 4), the delta-like NOTCH ligands (DLL-3 and 4), and typical downstream genes (HES1 and HEY1). Four genes (NOTCH1, NOTCH2, NOTCH3, and HEY1) presented prognostic values for the STAD outcome in terms of overall survival. Functional enrichment analysis indicated that NOTCH family genes-strongly correlated genes were mainly enriched in several KEGG signaling pathways such as the PI3K-Akt signaling pathway, human papillomavirus infection, focal adhesion, Rap1 signaling pathway, and ECM-receptor interaction. Gene set enrichment analysis (GSEA) results showed that NOTCH family genes-significantly correlated genes were mainly enriched in four signaling pathways, ECM (extracellular matrix), tumor angiogenesis, inflammatory response, and immune regulation. Conclusions. NOTCH family genes may play an essential role in the progression of STAD by modulating immune cells and mediating ECM synthesis, angiogenesis, focal adhesion, and PI3K-Akt signaling. Multiple NOTCH family genes are valuable candidate biomarkers or therapeutic targets for the management of STAD.

Publisher

Hindawi Limited

Subject

Biochemistry, medical,Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3