Adsorption of Polyanion onto Large Alpha Alumina Beads with Variably Charged Surface

Author:

Pham Tien Duc12,Kobayashi Motoyoshi1,Adachi Yasuhisa1

Affiliation:

1. Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan

2. Faculty of Chemistry, Hanoi University of Science, Vietnam National University-Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam

Abstract

Adsorption of strong polyelectrolyte, poly(styrenesulfonate), PSS, of different molecular weights onto large α-Al2O3 beads was systematically investigated as functions of pH and NaCl concentrations. The ultraviolet (UV) absorption spectra of PSS at different pH and salt concentrations confirmed that the structure of PSS is independent of pH. With the change of molecular weight from 70 kg/mol (PSS 70) to 1000 kg/mol (PSS 1000), adsorption amount of PSS increases and proton coadsorption on the surface of α-Al2O3 decreases at given pH and salt concentration. It suggests that higher molecular weight of PSS was less flat conformation than lower one. The adsorption density of PSS 70 and PSS 1000 decreases with decreasing salt concentrations, indicating that both electrostatic and nonelectrostatic interactions are involved. Experimental results of both PSS 70 and PSS 1000 adsorption isotherms onto α-Al2O3 at different pH and salt concentrations can be represented well by two-step adsorption model. The effects of molecular weight and salt concentration are explained by structure of adsorbed PSS onto α-Al2O3. The influence of added SDS on the isotherms is evaluated from the sequential adsorption. The SDS uptake onto α-Al2O3 in the presence of hemimicelles can prevent the adsorption of PSS at low concentration so that adsorption of PSS reduces with preadsorbed SDS.

Funder

Japan Society for the Promotion of Science

Publisher

Hindawi Limited

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3