Hinge Joints Performance Assessment of a PC Hollow Slab Bridge Based on Impact Vibration Testing

Author:

Xia Qi1,Zhou Yi-chen12,Cheng Yu-yao3,Zhang Jian12ORCID

Affiliation:

1. School of Civil Engineering, Southeast University, Nanjing 211189, China

2. Jiangsu Key Laboratory of Engineering Mechanics, Southeast University, Nanjing 211189, China

3. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China

Abstract

Hinge joint performance during the operation of prefabricated prestressed concrete (PC) hollow slab bridges is critical to ensure their lateral collaborative working condition and safe serviceability. Traditional performance identification of hinge joints mainly relies on manual inspection, which is inefficient and inaccurate. At the same time, existing indexes (such as acceleration and strain) can only qualitatively detect the damage to hinge joints. This study proposes a novelty detection method based on impact vibration testing to rapidly perform the quantitative assessment of the working condition of the hinge joints. The relationship between hinge joint performance and lateral load distribution (LLD) is first derived in detail by theoretical analysis. And then, the quantitative analysis of collaborative performance is converted to the identification of the LLD influence line, which is innovatively established by the lateral flexibility of the hollow slab bridge. The effectiveness of the proposed method is verified through a multibeam model using ABAQUS software, and the lateral collaborative working relationship between slabs is simulated using the connector elements. Furthermore, the LLD influence lines and hinge joints performance of a PC hollow slab Yanhu Bridge are evaluated based on the impact vibration testing with sensor lateral arrangement strategy. The detection results show that the proposed method can quickly and accurately identify the damage location and the stiffness loss of hinge joints.

Funder

Jiangsu Provincial Double-Innovation Doctoral Program

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3