An Automatic Image Processing Method Based on Artificial Intelligence for Locating the Key Boundary Points in the Central Serous Chorioretinopathy Lesion Area

Author:

Xu Jianguo1,Shen Jianxin1ORCID,Wan Cheng2,Yan Zhipeng3,Zhou Fen3ORCID,Zhang Shaochong4,Yang Weihua4ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

3. The Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210029, China

4. Shenzhen Eye Hospital, Jinan University, Shenzhen 518040, China

Abstract

Accurately and rapidly measuring the diameter of central serous chorioretinopathy (CSCR) lesion area is the key to judge the severity of CSCR and evaluate the efficacy of the corresponding treatments. Currently, the manual measurement scheme based on a single or a small number of optical coherence tomography (OCT) B-scan images encounters the dilemma of incredibility. Although manually measuring the diameters of all OCT B-scan images of a single patient can alleviate the previous issue, the situation of inefficiency will thus arise. Additionally, manual operation is subject to subjective factors of ophthalmologists, resulting in unrepeatable measurement results. Therefore, an automatic image processing method (i.e., a joint framework) based on artificial intelligence (AI) is innovatively proposed for locating the key boundary points of CSCR lesion area to assist the diameter measurement. Firstly, the initial location module (ILM) benefiting from multitask learning is properly adjusted and tentatively achieves the preliminary location of key boundary points. Secondly, the location task is formulated as a Markov decision process, aiming at further improving the location accuracy by utilizing the single agent reinforcement learning module (SARLM). Finally, the joint framework based on the ILM and SARLM is skillfully established, in which ILM provides an initial starting point for SARLM to narrow the active region of agent, and SARLM makes up for the defect of low generalization of ILM by virtue of the independent exploration ability of agent. Experiments reveal the AI-based method which joins the multitask learning, and single agent reinforcement learning paradigms enable agents to work in local region, alleviating the time-consuming problem of SARLM, performing location task in a global scope, and improving the location accuracy of ILM, thus reflecting its effectiveness and clinical application value in the task of rapidly and accurately measuring the diameter of CSCR lesions.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3