Prediction and Value of Ultrasound Image in Diagnosis of Fetal Central Nervous System Malformation under Deep Learning Algorithm

Author:

Zhou Yuehong1ORCID

Affiliation:

1. Department of Ultrasound Imaging, Suizhou Central Hospital, Suizhou 441300, Hubei, China

Abstract

This study was to explore the application of deep learning neural network (DLNN) algorithms to identify and optimize the ultrasound image so as to analyze the effect and value in diagnosis of fetal central nervous system malformation (CNSM). 63 pregnant women who were gated in the hospital were suspected of being fetal CNSM and were selected as the research objects. The ultrasound images were reserved in duplicate, and one group was defined as the control group without any processing, and images in the experimental group were processed with the convolutional neural network (CNN) algorithm to identify and optimize. The ultrasound examination results and the pathological test results before, during, and after the pregnancy were observed and compared. The results showed that the test results in the experimental group were closer to the postpartum ultrasound and the results of the pathological result, but the results in both groups showed no statistical difference in contrast to the postpartum results in terms of similarity ( P > 0.05 ). In the same pregnancy stage, the ultrasound examination results of the experimental group were higher than those in the control group, and the contrast was statistically significant ( P < 0.05 ); in the different pregnancy stages, the ultrasound examination results in the second trimester were more close to the postpartum examination results, showing statistically obvious difference ( P < 0.05 ). In conclusion, ultrasonic image based on deep learning was higher in CNSM inspection; and ultrasonic technology had to be improved for the examination in different pregnancy stages, and the accuracy of the examination results is improved. However, the amount of data in this study was too small, so the representative was not high enough, which would be improved.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3