Key Experimental Factors of Machine Learning-Based Identification of Surgery Cancellations

Author:

Zhang Fengyi12ORCID,Cui Xinyuan23,Gong Renrong4,Zhang Chuan5ORCID,Liao Zhigao1

Affiliation:

1. School of Management, Guangxi University of Science and Technology, Liuzhou, Guangxi Province 545006, China

2. Business School, Sichuan University, Chengdu, Sichuan Province 610000, China

3. School of Economics and Management, Harbin Institute of Technology, University Town, Nanshan, Shenzhen, China

4. West China Hospital, Sichuan University, Chengdu, Sichuan Province 610000, China

5. West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan Province 610000, China

Abstract

This study aimed to provide effective methods for the identification of surgeries with high cancellation risk based on machine learning models and analyze the key factors that affect the identification performance. The data covered the period from January 1, 2013, to December 31, 2014, at West China Hospital in China, which focus on elective urologic surgeries. All surgeries were scheduled one day in advance, and all cancellations were of institutional resource- and capacity-related types. Feature selection strategies, machine learning models, and sampling methods are the most discussed topic in general machine learning researches and have a direct impact on the performance of machine learning models. Hence, they were considered to systematically generate complete schemes in machine learning-based identification of surgery cancellations. The results proved the feasibility and robustness of identifying surgeries with high cancellation risk, with the considerable maximum of area under the curve (AUC) (0.7199) for random forest model with original sampling using backward selection strategy. In addition, one-side Delong test and sum of square error analysis were conducted to measure the effects of feature selection strategy, machine learning model, and sampling method on the identification of surgeries with high cancellation risk, and the selection of machine learning model was identified as the key factors that affect the identification of surgeries with high cancellation risk. This study offers methodology and insights for identifying the key experimental factors for identifying surgery cancellations, and it is helpful to further research on machine learning-based identification of surgeries with high cancellation risk.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence in Operating Room Management;Journal of Medical Systems;2024-02-14

2. Optimizing Operation Room Utilization—A Prediction Model;Big Data and Cognitive Computing;2022-07-06

3. Understanding Pediatric Surgery Cancellation: Geospatial Analysis;Journal of Medical Internet Research;2021-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3