Simulation-Based Evaluation of Variation in Left-Turn Paths in the Coordinated Intersection Management

Author:

Yang Menglin12ORCID,Yu Hao12ORCID,Bai Lu12ORCID

Affiliation:

1. School of Transportation, Southeast University, Nanjing 210096, China

2. Jiangsu Key Laboratory of Urban ITS, Nanjing 210096, China

Abstract

Coordinated intersection management (CIM) has gained more attention with the advance of connected and autonomous vehicle technology. The optimization of passing schedules and conflict separation between conflicting vehicles are usually conducted based on the predefined travelling paths through the intersection area in the CIM. In real-world implementation, however, the diversity of turn paths exists due to multiple factors such as various vehicle sizes and automation control algorithms. The aim of this paper is to investigate how the variation in left-turn paths affects the feasibility and viability of optimal passing schedules, as well as the safety and efficiency of intersection operation. To do this, we start with identifying six typical left-turn paths to represent the variation. A scenario-based simulation is first conducted by using each of the paths as the nominal path. The optimal schedules and the corresponding alternative schedules are generated to calculate indicators for nominal performance, average performance, and robustness. The best path is selected in terms of schedule optimality and robustness. With schedules obtained by solving CIM models using the selected path, the left-turning CAVs are assumed to travel along one of the six paths randomly to simulate the path divergence. A surrogate safety measure, PET, is utilized to assess the safety of the intersection under CIM. The theoretical PET with the nominal path and the actual PET with the random path are calculated for each conflict event. Comparisons of two PET sets show the increase in conflict risk and vehicle delay. The conclusion can be drawn that the variation in left-turn paths causes the decline in safety level and travelling efficiency and should be considered in the CIM model to ensure safe and efficient implementation in the intersection.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3