Modeling of Hydrodynamics in a 25 mm ϕ Pulsed Disk and Doughnut Column

Author:

Kumar Rajnish1,Sivakumar D.2,Kumar Shekhar2,Mudali U. Kamachi2

Affiliation:

1. Atomic Energy Regulatory Board, Mumbai 400094, India

2. Process Development and Equipment Section, Reprocessing R&D Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India

Abstract

The hydrodynamic parameters, namely, dispersed phase holdup and flooding throughput, have been investigated in 25 mm diameter pulsed disk and doughnut column (PDDC), in no mass transfer conditions. In this work, using existing correlations on plate pulsed columns, the dispersed phase holdup and the flooding throughput are empirically modelled well using the slip velocity concept. A good agreement is observed between experimental values and predicted values obtained from empirical correlation. The experimental data for dispersed phase holdup and flooding throughput has been modelled using the Van Delden model to describe the hydrodynamics characteristics of a PDDC and necessary adjustable parameters for drop size distribution and dispersed phase holdup are updated for 30% TBP-nitric acid system. The model parameters were estimated by minimizing the absolute error between experimental and theoretical values of flooding throughput and holdup data. It was found that the measured values and observed trends could be described accurately using this model after fitting holdup and flooding data. The error between the experimental and theoretical values of flooding throughput and holdup was found to be less than 10%.

Publisher

Hindawi Limited

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3