Inverse Method of Centrifugal Pump Blade Based on Gaussian Process Regression

Author:

Zhang Renhui12ORCID,Zhao Xutao1ORCID

Affiliation:

1. School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China

2. Key Laboratory of Fluid Machinery and Systems, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

The inverse problem is always one of the important issues in the field of fluid machinery for the complex relationship among the blade shape, the hydraulic performance, and the inner flow structure. Based on Bayesian theory of posterior probability obtained from known prior probability, the inverse methods for the centrifugal pump blade based on the single-output Gaussian process regression (SOGPR) and the multioutput Gaussian process regression (MOGPR) were proposed, respectively. The training sample set consists of the blade shape parameters and the distribution of flow parameters. The hyperparameters in the inverse problem models were trained by using the maximum likelihood estimation and the gradient descent algorithm. The blade shape corresponding to the objective blade load can be achieved by the trained inverse problem models. The MH48-12.5 low specific speed centrifugal pump was selected to verify the proposed inverse methods. The reliability and accuracy of both inverse problem models were confirmed and compared by implementing leave-one-out (LOO) cross-validation and extrapolation characteristic analysis. The results show that the blade shapes within the sample space can be reconstructed exactly by both models. The root mean square errors of the MOGPR inverse problem model for the pump blade are generally lower than those of the SOGPR inverse problem model in the LOO cross-validation. The extrapolation characteristic of the MOGPR inverse problem model is better than that of the SOGPR inverse problem model for the correlation between the blade shape parameters can be fully considered by the correlation matrix of the MOGPR model. The proposed inverse methods can efficiently solve the inverse problem of centrifugal pump blade with sufficient accuracy.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3