RNAi-Based Strategies for Cyclooxygenase-2 Inhibition in Cancer

Author:

Strillacci Antonio1,Griffoni Cristiana1,Valerii Maria Chiara1,Lazzarini Giorgia1,Tomasi Vittorio1,Spisni Enzo1

Affiliation:

1. Department of Experimental Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy

Abstract

Cyclooxygenase-2 (COX-2) enzyme has been involved in the tumorigenesis and in the progression of colorectal cancer (CRC). The use of traditional nonsteroidal anti-inflammatory drugs (NSAIDs) or selective COX-2 inhibitors has been proposed for the prevention and the treatment of this relevant neoplastic disease. In the light of an innovative alternative to these pharmacological approaches, we review here the possible strategies to achieve a strong and selective inhibition of COX-2 enzyme by using the mechanism of RNA Interference (RNAi) targeted against its mRNA. Anti-COX-2 siRNA molecules (siCOX-2) can be generated in CRC cells from short hairpin RNA (shRNA) precursors, delivered in vitro by a retroviral expression system, and induce a significant and stable silencing of overexpressed COX-2 in human colon cancer cells. As a safer alternative to viral approach, nonpathogenic bacteria (E. coli) can be engineered to invade eukaryotic cells and to generate siCOX-2 molecules in cancer cells. Moreover, the involvement of miRNAs in COX-2 posttranscriptional regulation opens up the possibility to exploit an endogenous silencing mechanism to knockdown overexpressed COX-2. Thus, these recent strategies disclose new challenging perspectives for the development of clinically compatible siRNA or miRNA capable of selectively inhibiting COX-2 enzyme.

Funder

Ministry of Education, Universities and Research

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Genetics,Molecular Biology,Molecular Medicine,General Medicine,Biotechnology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3