Welding Process Tracking Control Based on Multiple Model Iterative Learning Control

Author:

Li Xiaoli123ORCID,Liu Jian1ORCID,Wang Linkun4,Wang Kang1ORCID,Li Yang5ORCID

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

2. Beijing Key Laboratory of Computational Intelligence and Intelligent System, Engineering Research Center of Digital Community, Ministry of Education, Beijing 100124, China

3. Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing 100124, China

4. Instrumentation Technology & Economy Institute, Beijing 100055, China

5. School of international studies, Communication University of China, Beijing 100024, China

Abstract

The welding of the same parts has same welding trajectory, so welding process has strong repeatability. In this paper, aiming at the repeatability of welding process, an iterative learning controller is designed to achieve the control of weld quality. Due to the extremely variable welding environment and the presence of noise interferences and load disturbances, it is easy to cause the jumping change in parameters and even the structure of the welding system. Therefore, the idea of multiple model adaptive control (MMAC) is introduced into iterative learning control (ILC), and a multiple model iterative learning control (MMILC) algorithm is designed according to model of weld pool dynamic process in gas tungsten arc welding (GTAW). Besides, the convergence of the algorithm is analyzed for two cases: fixed parameters and jumping parameters. It turns out that the MMILC can not only utilize the repetitive information effectively in the welding process to achieve high precision tracking control of weld seam in limited time interval, but also realize the multiple model switching according to different working conditions to improve the welding quality.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3