Innovative Research of Trajectory Prediction Algorithm Based on Deep Learning in Car Network Collision Detection and Early Warning System

Author:

Wang Rongxia1ORCID,Alazzam Malik Bader2ORCID,Alassery Fawaz3ORCID,Almulihi Ahmed4,White Marvin5

Affiliation:

1. School of Information Engineering, Guangzhou Nanyang Polytechnic College, Guangzhou 510925, Guangdong Province, China

2. Faculty of Computer Science and Informatics, Amman Arab University, Amman, Jordan

3. Department of Computer Engineering, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia

4. Department of Computer Science, College of Computers and Information Technology, Taif University, Taif, Saudi Arabia

5. Department of Information Engineering, Southern University and A&M College, Baton Rouge, LA, USA

Abstract

Predicting the trajectories of neighboring vehicles is essential to evade or mitigate collision with traffic participants. However, due to inadequate previous information and the uncertainty in future driving maneuvers, trajectory prediction is a difficult task. Recently, trajectory prediction models using deep learning have been addressed to solve this problem. In this study, a method of early warning is presented using fuzzy comprehensive evaluation technique, which evaluates the danger degree of the target by comprehensively analyzing the target’s position, horizontal and vertical distance, speed of the vehicle, and the time of the collision. Because of the high false alarm rate in the early warning systems, an early warning activation area is established in the system, and the target state judgment module is triggered only when the target enters the activation area. This strategy improves the accuracy of early warning, reduces the false alarm rate, and also speeds up the operation of the early warning system. The proposed system can issue early warning prompt information to the driver in time and avoid collision accidents with accuracy up to 96%. The experimental results show that the proposed trajectory prediction method can significantly improve the vehicle network collision detection and early warning system.

Funder

Key Natural Science Research Projects of a New Generation of Information Technology In-Focus Areas in 2020 of General Universities in Guangdong Province

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3