Secure Multiusers Directional Modulation Scheme Based on Random Frequency Diverse Arrays in Broadcasting Systems

Author:

Gao Jianbang12ORCID,Yuan Zhaohui1,Qiu Bin3,Zhou Jing2

Affiliation:

1. School of Automation, Northwestern Polytechnical University, Xi’an 710072, China

2. School of Electronic Engineering, Xi’an Shiyou University, Xi’an 710000, China

3. School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

In this paper, we research a synthesis scheme for secure wireless communication in the broadcasting multiusers directional modulation system, which consists of multiple legitimate users (LUs) receiving the same confidential messages and multiple eavesdroppers (Eves) intercepting the confidential messages. We propose a new type of array antennas, termed random frequency diverse arrays (RFDA), to enhance the security of confidential messages due to its angle-range dependent beam patterns. Based on RFDA, we put forward a synthesis scheme to achieve multiobjective secure wireless communication. First, with known locations of Eves, the beamforming vector is designed to minimize Eves’ receiving power of confidential message (Min-ERP) while satisfying the power requirement of LUs. Furthermore, we research a more practical scenario, where locations of Eves are unknown. Unlike the scenario of known locations of Eves, the beamforming vector is designed to maximize the sum received power of LUs (Max-LRP) while satisfying a minimum received power constraint at each LU. Second, the artificial-noise projection matrix (ANPM) is calculated to reduce artificial-noise (AN) impact on LUs and enhance the interference on Eves. Numerical results verify the superior secure performance of the proposed schemes in the broadcasting multiusers system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large-Scale Multicast Group Secure Transmission Scheme Based on Multi-Carrier FDA;Sensors;2023-11-23

2. Power-Efficient Artificial-Noise Optimization for Secure Multi-Beam Wireless Communication;2023 5th International Conference on Intelligent Control, Measurement and Signal Processing (ICMSP);2023-05-19

3. Transmitted Data Security in Non-Orthogonal Multiple Access Networks with Directional Modulation Based on User Location;International Journal of Information and Communication Technology Research;2023-03-01

4. Multitarget Position-Sensitivity Security Transmission with OAM-DM Based on FDA;Security and Communication Networks;2021-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3