Anti-Diabetic Atherosclerosis by Inhibiting High Glucose-Induced Vascular Smooth Muscle Cell Proliferation via Pin1/BRD4 Pathway

Author:

Wu Yuansheng1,Zhang Meijin2,Xu Changsheng3,Chai Dajun2,Peng Feng2ORCID,Lin Jinxiu2ORCID

Affiliation:

1. The First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian, China

2. Department of Cardiology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China

3. Fujian Provincial Institute of Hypertension, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China

Abstract

Background and purpose. Vascular smooth muscle cells (VSMC) proliferation and migration is the important pathological process of diabetic atherosclerosis. Bromine domain protein 4 (BRD4) is involved in cell proliferation and inflammatory disease. Pin1 enhances BRD4 stability and its transcriptional activity. This study aimed to explore the possible mechanism of Pin1/BRD4 in diabetic atherosclerosis. Methods. Diabetic Apoe-/- mice induced by streptozotocin were treated with vehicle, the Pin1 inhibitor juglone, or the BRD4 inhibitor JQ1 for 3 weeks. VSMCs were pretreated with juglone, JQ1, or vehicle for 45 min, and then exposed to high glucose for 48 h. Hematoxylin–eosin staining was performed to assess atherosclerotic plaques of the thoracic aorta. Western blotting was used to detect expression levels of Pin1, BRD4, cyclin D1, and matrix metalloproteinase-9 (MMP-9) in the thoracic aorta and VSMCs. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and transwell assay were used to measure proliferation and migration of VSMCs. Results. Juglone and JQ1 significantly improved atherosclerosis of diabetic Apoe-/- mice and reduced high glucose-induced VSMC proliferation and migration. Cyclin D1 and MMP-9 levels in the thoracic aorta were lower in diabetic Apoe-/- mice treated with juglone and JQ1 compared with vehicle-treated diabetic Apoe-/- mice. Additionally, BRD4 protein expression in high glucose-induced VSMCs was inhibited by juglone and JQ1. Upregulation of Pin1 expression by transduction of the Pin1 plasmid vector promoted BRD4 expression induced by high glucose, and stimulated proliferation and migration of VSMCs. Conclusions. Inhibition of Pin1/BRD4 pathway may improve diabetic atherosclerosis by inhibiting proliferation and migration of VSMCs.

Funder

Fujian Provincial Health Technology Project

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3