Effects of Ethanol Blending on the Formation of Soot in n-Heptane/Air Coflow Diffusion Flame

Author:

Ya Yuchen1,Nie Xiaokang1,Peng Licheng2,Xiang Longkai1,Hu Jialong1,Dong Wenlong1,Chu Huaqiang1ORCID

Affiliation:

1. School of Energy and Environment, Anhui University of Technology, Ma’anshan 243002, Anhui, China

2. College of Ecology and Environment, Hainan University, Haikou 570228, Hainan, China

Abstract

Laminar diffusion flame was used to study the effect of ethanol on n-heptane flame in terms of the morphology and microstructure of soot under atomization combustion. For the same carbon mass flux at the outlet of the burner, the ratio of ethanol doping in n-heptane was changed, and the soot was collected from the axial positions of the flame at different heights using the thermophoresis probe method. The results showed that the flame height increased significantly with the increasing ratio of ethanol doping. When the ratio of ethanol and n-heptane (CE/CN) was 1.5, the flame height increased by 10 mm compared with that of pure n-heptane flame. Besides, the temperature in the center of the flame decreased with the increasing ratio of ethanol doping, but the temperature in the low position was higher than that in the pure n-heptane flame, and the temperature in the high position was lower than that in the pure n-heptane flame. However, the flame temperature was the highest when the proportion of ethanol in the mixture was greater than that of n-heptane. The temperature at the flame center decreased with the increasing ratio of ethanol doping, while the temperature at the flame edge increased with the ratio. The primary particle size of soot (soot size hereafter) in all working conditions increased with the increase of flame height, which was in line with the general growth law of soot. Moreover, the soot size at the same height decreased with the increasing ratio of ethanol doping, and this trend was most obvious at the flame height of 20 mm and 30 mm. Compared with pure n-heptane, when CE/CN was 1.5, the soot size at 20 mm and 30 mm decreased by an average of 34.83%, indicating that ethanol could inhibit the surface growth of soot particle. Furthermore, the density of soot particles collected by a single copper net decreased significantly, indicating that ethanol could reduce the production amount of soot.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3