An Optimized Pulse-Counting Method for Compensation Vector Calculation in the Automatic Balancer

Author:

Chen Lifang1ORCID,Zhou Bo2ORCID,Li Zhaoju1,Guo Yixiang2,Yan Ziwen1

Affiliation:

1. Key Laboratory of Engine Health Monitoring-Control and Networking (Ministry of Education), Beijing University of Chemical Technology, Beijing100029, China

2. Beijing Key Laboratory of Health Monitoring and Self-Recovery for High-End Mechanical Equipment, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

The accuracy of the counterweight positions in an automatic balancing system deeply affects dynamic balancing. Compensation vector is synthesized by the two counterweights located in the electromagnetic dual-weight automatic balancer. Therefore, if the position of the counterweight is inaccurate, it may result in a wrong adjustment and a larger imbalance of the rotor system. In this paper, an optimized pulse counting method for compensation vector calculation in an electromagnetic dual-weight balancing system is proposed based on a programmable logic controller (PLC). A propeller automatic balancing simulation test bench is used to verify the effect of the method by obtaining the positions of the counterweights and synthesizing the compensation vector in the working mode. The error is less than 1/80 which means that it does not exceed one step in the 80-position-balancer at 1200 rpm. The proposed control system can work without computers or high-speed data acquisition equipment, which improves the stability and flexibility of the control system, facilitates the design of the automatic balancing system, and shows excellent potential for industrial applications.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two planes balancing method of UAV motors using a single three-axis MEMS accelerometer;2022 International Conference on Unmanned Aircraft Systems (ICUAS);2022-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3