Predictive Model of Air Transportation Management Based on Intelligent Algorithms of Wireless Network Communication

Author:

La Jiezhuoma1ORCID,Bil Cees1,Heiets Iryna1,Lau Ken Anon2

Affiliation:

1. School of Engineering, RMIT University (Royal Melbourne Institute of Technology University), Melbourne, 3000 VIC, Australia

2. Qatar Airways, Doha 22550, Qatar

Abstract

Due to the numerous factors that affect the air passenger traffic in the air transportation market and the randomness of various factors, in addition, the relationship between it and the air passenger traffic is very complicated, so the air passenger traffic forecast in the air transportation market has always been difficult to solve problem. This research mainly discusses the prediction model of air transportation management based on the intelligent algorithm of wireless network communication. This article uses the wireless network communication intelligent algorithm, comprehensively considers the influence of the GDP growth rate, population growth rate, total import and export volume, and other factors on the air transportation market, and draws a relatively complete forecasting model of aviation business volume. In this paper, we use an equal-weight method, linear combination model method, and Bayesian combination model method when selecting the combination forecasting method (these three methods). Because of the parallelism, robustness, nonlinearity, and other characteristics of the Bayesian network method, it adapts to the complex and highly nonlinear characteristics between air passenger traffic and its influencing factors. In the comprehensive prediction of the single model, the different information contained in the single model is used to achieve different combined prediction effects. The economic information and forecasting angle of the system can reduce systematic forecasting errors and optimize the prognostic results, which can make us more intuitively understand the difference of forecasting results brought by different combination forecasting methods. The Theil inequality coefficient of the ARIMA model is 0.004874, and the average absolute percentage error is 0.005914. This research will play a certain guiding role in the development of China’s civil aviation industry.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference31 articles.

1. A dynamically optimized aircraft boarding strategy

2. Prospects of transition of air transportation to clean fuels: economic and environmental management aspects;S. V. Rattier;International Energy Journal,2019

3. Modeling fair air traffic assignment in the vicinity of airports

4. Transportation management of facilities for rescue operations upon disaster mitigation;V. B. Vilkov;International Journal of Civil Engineering and Technology,2018

5. A hybrid MCDM and sustainability-balanced scorecard model to establish sustainable performance evaluation for international airports

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3