Extended ForUML for Automatic Generation of UML Sequence Diagrams from Object-Oriented Fortran

Author:

Nanthaamornphong Aziz1ORCID,Leatongkam Anawat1ORCID

Affiliation:

1. College of Computing, Prince of Songkla University, Phuket Campus, Phuket Province, Thailand

Abstract

Recently, reverse engineering has become widely recognized as a valuable process for extracting system abstractions and design information from existing software. This study focuses on ForUML, a reverse engineering tool developed to extract UML diagrams from modern object-oriented Fortran programs. Generally, Fortran is used to implement scientific and engineering software in various domains, such as weather forecasting, astrophysics, and engineering design. However, methods for visualizing the existing design of object-oriented Fortran software are lacking. UML diagrams of Fortran software would be beneficial to scientists and engineers in explaining the structure and behavior of their programs at a higher level of abstraction than the source code itself. UML diagrams can enhance discussions within development teams and with the broader scientific community. The first version of ForUML produces only UML class diagrams. Class diagrams provide a useful window into the static structure of a program, including the structure and components of each class and the relationships between classes. However, class diagrams lack the temporal information required to understand class behavior and interactions between classes. UML sequence diagrams provide this important algorithmic information. Therefore, herein, an extension for ForUML to extract UML sequence diagrams from the Fortran code is proposed, and this capability is provided using a widely used open-source platform. This study argues that the proposed extension will enable the visualization of object-oriented Fortran software behavior and algorithmic structure and thereby enhance the development, maintenance practices, decision processes, and communications in scientific and engineering software communities worldwide.

Funder

Prince of Songkla University

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3