Myoinositol Attenuates the Cell Loss and Biochemical Changes Induced by Kainic Acid Status Epilepticus

Author:

Tsverava Lia1ORCID,Lordkipanidze Tamar12ORCID,Lepsveridze Eka1ORCID,Nozadze Maia12ORCID,Kikvidze Marina1,Solomonia Revaz12ORCID

Affiliation:

1. Institute of Chemical Biology, Ilia State University, 3/5 K. Cholokashvili Avenue, 0162 Tbilisi, Georgia

2. I. Beritashvili Center of Experimental Biomedicine, 14 L. Gotua Street, 0160 Tbilisi, Georgia

Abstract

Identification of compounds preventing or modifying the biochemical changes that underlie the epileptogenesis process and understanding the mechanism of their action are of great importance. We have previously shown that myoinositol (MI) daily treatment for 28 days prevents certain biochemical changes that are triggered by kainic acid (KA) induced status epilepticus (SE). However in these studies we have not detected any effects of MI on the first day after SE. In the present study we broadened our research and focused on other molecular and morphological changes at the early stages of SE induced by KA and effects of MI treatment on these changes. The increase in the amount of voltage-dependent anionic channel-1 (VDAC-1), cofilin, and caspase-3 activity was observed in the hippocampus of KA treated rats. Administration of MI 4 hours later after KA treatment abolishes these changes, whereas diazepam treatment by the same time schedule has no significant influence. The number of neuronal cells in CA1 and CA3 subfields of hippocampus is decreased after KA induced SE and MI posttreatment significantly attenuates this reduction. No significant changes are observed in the neocortex. Obtained results indicate that MI posttreatment after KA induced SE could successfully target the biochemical processes involved in apoptosis, reduces cell loss, and can be successfully used in the future for translational research.

Funder

Ilia State University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3