Insulator Hydrophobic Image Edge Detection Algorithm considering Deconvolution and Deblurring Algorithm

Author:

Wang Dalei1ORCID,Ma Lan2ORCID

Affiliation:

1. School of Mechanical and Electronic Engineering, Suzhou University, Anhui 234000, China

2. School of Mathematics and Statistics, Suzhou University, Anhui 234000, China

Abstract

In this paper, the Gram matrix is used to calculate the correlation of the filter response sets under different scale kernels learned by each layer of the network in the deconvolution, and the loss between the corresponding feature response correlations in the multilayer network is calculated. Linear summation is used to obtain a stable, multiscale image model representation. This paper extracts the contours of the salient areas of the image and adjusts the parameters of the deconvolution network to learn the salient area patterns of the image. At the same time, for the image to be generated, a shape template is used to limit the range of the area to be generated in order to obtain a shape image with similar patterns. When the spatial relative relationship characteristics of the image constituent objects are obvious, we appropriately add high-level semantic feature activation values for reinforcement. This paper solves the estimation of the unknown blur kernel by using image prior knowledge, filtering and gradient domain algorithms and other different technologies to obtain image jitter or scene movement information and estimate the size, location, and density of the blur kernel. This paper studies a relatively robust deconvolution model, which is insensitive to random noise, has stable effects, and can overcome the water ripple effect caused by the usual convolution process. This paper attempts to study the fuzzy model with variable space. The usual blur is a spatial invariant model; that is, a single kernel is used to describe the motion of all pixels on the image. By selecting different characteristic parameters, this paper conducts experimental research on some existing hydrophobic indicator function methods and calculates the relationship between characteristic parameters and hydrophobicity when different hydrophobic indicator functions are adopted. One characteristic of the hydrophobic image of composite insulators is low contrast. The traditional method of converting color images to grayscale images cannot improve the image contrast. This paper analyzes the hydrophobic image of the composite insulator, and the extracted B channel component image of the hydrophobic image improves the contrast of the image and facilitates the subsequent segmentation of water traces and background. In this paper, the water repellent image's watermark area is counted, and connected-domain wave processing is used to limit the area of water droplets retained, thereby improving the efficiency of filtering water droplets without having a big impact on the image as a whole. The problem of uneven illumination is an unavoidable problem in the field of image processing, and the resulting reflection problem brings difficulties to image processing. This article regards the reflective area of the watermark as a “hole” and uses the idea of “hole filling” to eliminate the reflective point, which weakens the reflection problem to a certain extent.

Funder

Suzhou University

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3