Affiliation:
1. Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
2. Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
Abstract
Background. Rab22a is a member of the RAS superfamily, involved in early endosome formation and intracellular vesicle transport. Rab22a is significantly upregulated in a variety of malignant tumors. However, its function in thyroid cancer has never been addressed. Methods. The expression of Rab22a in paraffin sections of 101 patients was detected by immunohistochemical staining. By upregulating and downregulating the expression of Rab22a in thyroid cancer cell lines, the effect of Rab22a on cell proliferation, invasion, and migration was analyzed. Co-IP was employed, and the interaction between Rab22a and PI3Kp85α was shown. The function of Rab22a on PI3K/AKT/mTOR signaling and epithelial-mesenchymal transition (EMT) was further studied by western blot analysis. Results. Immunostaining showed that Rab22a was significantly overexpressed in thyroid cancer tissues but negative in adjacent normal tissues or nodular goiters. The proliferation, migration, invasion, and EMT in papillary thyroid carcinoma cell lines were enhanced upon Rab22a overexpression but inhibited after knocking down Rab22a. The co-IP assay demonstrated an interaction between Rab22a and PI3K85α, an effector of PI3K. We further found that Rab22a can activate the PI3K/AKT/mTOR signaling pathway. However, the ability of Rab22a to promote the proliferation, invasion, migration, and EMT of papillary thyroid carcinoma cells was significantly inhibited after being treated with LY294002, a PI3K inhibitor. Conclusions. Rab22a can promote the EMT process and enhance proliferation, migration, and invasion of papillary thyroid carcinoma cells by activating the PI3K/AKT/mTOR signaling pathway. Our study provides new pathological diagnosis clues and clinical treatment targets for thyroid cancer.
Funder
Natural Science Foundation of Liaoning
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献