Abstract
A hierarchical panel method for representing vortex sheet surface motion in 3D flow is presented. Unlike previously employed filament methods, each panel is a leaf of the tree, so it can be subdivided locally, which allows an efficient adaptive point insertion. In addition, we developed curvature-based insertion criteria which allow to localize point insertion to the most complicated curved regions of the sheet. The particles representing the sheet are advected by a regularized Biot-Savart integral with Rosenhead-Moore kernel. The particle velocities are evaluated by an adaptive treecode algorithm based on Taylor expansions in Cartesian coordinates due to Lindsay and Krasny (2001). The method allows to consider much later stages of a vortex ring instability, which may shed light on this complicated flow phase directly leading to the turbulent flow.
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献