A Parallel Ranging-Based Relative Position and Orientation Measurement Method for Large-Volume Components

Author:

Wu Dian1ORCID,Du Fuzhou1ORCID

Affiliation:

1. School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China

Abstract

In this paper, a novel relative position and orientation (R-P&O) measurement method for large-volume components is proposed. Based on the method, the parallel distances between the cooperative point pairs (CPPs) are collected by multiple pairs of wireless ranging sensors which are installed on respective components and finally turned into the R-P&O. Accordingly, a measurement model is built and an algorithm is designed to solve the model, in which the radial basis function neural network (RBFNN) produces a preliminary solution by offline training and the differential evolution (DE) strategy finds the accurate solution by online heuristic searching. Furthermore, the crucial parameters and the performance of the algorithm are analyzed through simulating a virtual alignment process which proves that the RBFNN-DE algorithm can quickly and accurately find the global optimal solution in the whole effective workspace. Besides the theory study, a ranging device based on ultrasound has been developed along with a calibration method. Depending on the device, an experiment of actual alignment is implemented to verify the algorithm. Experimental results indicate that the error of R-P&O is no more than 4.1 mm and 0.32° when the ranging error is 0.1 mm, compared with the measurement result of indoor GPS (iGPS).

Funder

State Key Laboratory of Precision Measurement Technology and Instruments

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization strategies for the selection of mobile edges in hybrid crowdsensing architectures;Computer Communications;2020-05

2. Differential Evolution in Wireless Communications: A Review;International Journal of Online and Biomedical Engineering (iJOE);2019-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3