Affiliation:
1. School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
Abstract
In this paper, a novel relative position and orientation (R-P&O) measurement method for large-volume components is proposed. Based on the method, the parallel distances between the cooperative point pairs (CPPs) are collected by multiple pairs of wireless ranging sensors which are installed on respective components and finally turned into the R-P&O. Accordingly, a measurement model is built and an algorithm is designed to solve the model, in which the radial basis function neural network (RBFNN) produces a preliminary solution by offline training and the differential evolution (DE) strategy finds the accurate solution by online heuristic searching. Furthermore, the crucial parameters and the performance of the algorithm are analyzed through simulating a virtual alignment process which proves that the RBFNN-DE algorithm can quickly and accurately find the global optimal solution in the whole effective workspace. Besides the theory study, a ranging device based on ultrasound has been developed along with a calibration method. Depending on the device, an experiment of actual alignment is implemented to verify the algorithm. Experimental results indicate that the error of R-P&O is no more than 4.1 mm and 0.32° when the ranging error is 0.1 mm, compared with the measurement result of indoor GPS (iGPS).
Funder
State Key Laboratory of Precision Measurement Technology and Instruments
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献