Synthesis, Characterization, and Interaction with Biomolecules of Platinum(II) Complexes with Shikimic Acid-Based Ligands

Author:

Peng Yan1,Zhang Min-Min1,Chen Zhen-Feng1,Hu Kun1,Liu Yan-Cheng1,Chen Xia1,Liang Hong1

Affiliation:

1. State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Chemical Engineering of Guangxi Normal University, Guilin 541004, China

Abstract

Starting from the active ingredient shikimic acid (SA) of traditional Chinese medicine and NH2(CH2)nOH, (n=2–6), we have synthesized a series of new water-soluble Pt(II) complexes PtLa–eCl2, where La–eare chelating diamine ligands with carbon chain covalently attached to SA (La–e= SA-NH(CH2)nNHCH2CH2NH2; La,n=2; Lb,n=3; Lc,n=4; Ld,n=5; Le,n=6). The results of the elemental analysis, LC-MS, capillary electrophoresis, and1H,13C NMR indicated that there was only one product (isomer) formed under the present experimental conditions, in which the coordinate mode of PtLa–eCl2was two-amine bidentate. Theirin vitrocytotoxic activities were evaluated by MTT method, where these compounds only exhibited low cytotoxicity towards BEL7404, which should correlate their low lipophilicity. The interactions of the five Pt(II) complexes with DNA were investigated by agarose gel electrophoresis, which suggests that the Pt(II) complexes could induce DNA alteration. We also studied the interactions of the Pt(II) complexes with5-GMP with ESI-MS and1H NMR and found that PtLbCl2, PtLcCl2, and PtLdCl2could react with5-GMP to form mono-GMP and bis-GMP adducts. Furthermore, the cell-cycle analysis revealed that PtLbCl2, PtLcCl2cause cell G2-phase arrest after incubation for 72 h. Overall, these water-soluble Pt(II) complexes interact with DNA mainly through covalent binding, which blocks the DNA synthesis and replication and thus induces cytotoxicity that weakens as the length of carbon chain increases.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3