Reversible and Fragile Watermarking for Medical Images

Author:

Atta-ur-Rahman 1ORCID,Sultan Kiran2,Aldhafferi Nahier3ORCID,Alqahtani Abdullah3,Mahmud Maqsood4

Affiliation:

1. Department of Computer Science (CS), College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, Saudi Arabia

2. Department of CIT, JCC, King Abdulaziz University, Jeddah, Saudi Arabia

3. Department of CIS, College of Computer Science and Information Technology (CCSIT), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, Saudi Arabia

4. Department of MIS, College of Business Administraction, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam, Saudi Arabia

Abstract

A novel reversible digital watermarking technique for medical images to achieve high level of secrecy, tamper detection, and blind recovery of the original image is proposed. The technique selects some of the pixels from the host image using chaotic key for embedding a chaotically generated watermark. The rest of the pixels are converted to residues by using the Residue Number System (RNS). The chaotically selected pixels are represented by the polynomial. A primitive polynomial of degree four is chosen that divides the message polynomial and consequently the remainder is obtained. The obtained remainder is XORed with the watermark and appended along with the message. The decoder receives the appended message and divides it by the same primitive polynomial and calculates the remainder. The authenticity of watermark is done based on the remainder that is valid, if it is zero and invalid otherwise. On the other hand, residue is divided with a primitive polynomial of degree 3 and the obtained remainder is appended with residue. The secrecy of proposed system is considerably high. It will be almost impossible for the intruder to find out which pixels are watermarked and which are just residue. Moreover, the proposed system also ensures high security due to four keys used in chaotic map. Effectiveness of the scheme is validated through MATLAB simulations and comparison with a similar technique.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3