Image Segmentation Using a Trimmed Likelihood Estimator in the Asymmetric Mixture Model Based on Generalized Gamma and Gaussian Distributions

Author:

Zhou Yi1,Zhu Hongqing1ORCID

Affiliation:

1. School of Information Science & Engineering, East China University of Science and Technology, Shanghai 200237, China

Abstract

Finite mixture model (FMM) is being increasingly used for unsupervised image segmentation. In this paper, a new finite mixture model based on a combination of generalized Gamma and Gaussian distributions using a trimmed likelihood estimator (GGMM-TLE) is proposed. GGMM-TLE combines the effectiveness of Gaussian distribution with the asymmetric capability of generalized Gamma distribution to provide superior flexibility for describing different shapes of observation data. Another advantage is that we consider the spatial information among neighbouring pixels by introducing Markov random field (MRF); thus, the proposed mixture model remains sufficiently robust with respect to different types and levels of noise. Moreover, this paper presents a new component-based confidence level ordering trimmed likelihood estimator, with a simple form, allowing GGMM-TLE to estimate the parameters after discarding the outliers. Thus, the proposed algorithm can effectively eliminate the disturbance of outliers. Furthermore, the paper proves the identifiability of the proposed mixture model in theory to guarantee that the parameter estimation procedures are well defined. Finally, an expectation maximization (EM) algorithm is included to estimate the parameters of GGMM-TLE by maximizing the log-likelihood function. Experiments on multiple public datasets demonstrate that GGMM-TLE achieves a superior performance compared with several existing methods in image segmentation tasks.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3