Model Selection Approaches for Predicting Future Order Statistics from Type II Censored Data

Author:

Chiang Jyun-You1,Wang Shuai1,Tsai Tzong-Ru2ORCID,Li Ting3

Affiliation:

1. School of Statistics, Southwestern University of Finance and Economics, Chengdu, China

2. Department of Statistics, Tamkang University, New Taipei City, Taiwan

3. College of Management and Economics, Tianjin University, Tianjin, China

Abstract

This paper studies a discriminant problem of location-scale family in case of prediction from type II censored samples. Three model selection approaches and two types of predictors are, respectively, proposed to predict the future order statistics from censored data when the best underlying distribution is not clear with several candidates. Two members in the location-scale family, the normal distribution and smallest extreme value distribution, are used as candidates to illustrate the best model competition for the underlying distribution via using the proposed prediction methods. The performance of correct and incorrect selections under correct specification and misspecification is evaluated via using Monte Carlo simulations. Simulation results show that model misspecification has impact on the prediction precision and the proposed three model selection approaches perform well when more than one candidate distributions are competing for the best underlying distribution. Finally, the proposed approaches are applied to three data sets.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Censored Data Prediction Based on Model Selection Approaches;Springer Handbook of Engineering Statistics;2023

2. Evaluation of the Robustness of MLE Method for Selecting the Best Fitting Lifetime Distribution;2022 Annual Reliability and Maintainability Symposium (RAMS);2022-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3