Edge Constraint and Location Mapping for Liver Tumor Segmentation from Nonenhanced Images

Author:

Zhang Jina1ORCID,Luo Shichao1,Qiang Yan1ORCID,Tian Yuling1,Xiao Xiaojiao1,Li Keqin2,Li Xingxu1

Affiliation:

1. College of Information and Computer, Taiyuan University of Technology, Taiyuan, China

2. Department of Computer Science, State University of New York, New Paltz, New York 12561, USA

Abstract

As there is no contrast enhancement, the liver tumor area in nonenhanced MRI exists with blurred edges and low contrast, which greatly affects the speed and accuracy of liver tumor diagnosis. As a result, precise segmentation of liver tumor from nonenhanced MRI has become an urgent and challenging task. In this paper, we propose an edge constraint and localization mapping segmentation model (ECLMS) to accurately segment liver tumor from nonenhanced MRI. It consists of two parts: localization network and dual-branch segmentation network. We build the localization network, which generates prior coarse masks to provide position mapping for the segmentation network. This part enhances the ability of the model to localize liver tumor in nonenhanced images. We design a dual-branch segmentation network, where the main decoding branch focuses on the feature representation in the core region of the tumor and the edge decoding branch concentrates on capturing the edge information of the tumor. To improve the ability of the model for capturing detailed features, sSE blocks and dense upward connections are introduced into it. We design the bottleneck multiscale module to construct multiscale feature representations using kernels of different sizes while integrating the location mapping of tumor. The ECLMS model is evaluated on a private nonenhanced MRI dataset that comprises 215 different subjects. The model achieves the best Dice coefficient, precision, and accuracy of 90.23%, 92.25%, and 92.39%, correspondingly. The effectiveness of our model is demonstrated by experiment results, and our model reaches superior results in the segmentation task of nonenhanced liver tumor compared to existing segmentation methods.

Funder

Taiyuan Science and Technology Project Plan

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3