Internal Structure of a Jet Nozzle for Coalbed Methane Mining Based on Airfoil Curves

Author:

Chen Jian1ORCID,Guo Liwen2ORCID,Hu Yanwei1ORCID,Chen Yong3

Affiliation:

1. College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. North China University of Science and Technology, TangShan 063609, China

3. CNOOC Ener Tech-Drilling and Production Co., Tianjin 300461, China

Abstract

Based on airfoil curves that can effectively balance the rectification and drag reduction effects in flight hydrodynamics, we designed an internal streamline structure of jet nozzle for coalbed methane (CBM) mining. The three types of nozzles originating from three typical airfoil curves are compared with the conical nozzle. Results showed that the thin-type streamlined nozzle had the largest effective shock range and least radial divergence and was thus selected as the best nozzle. Moreover, the pressure distribution at the outlet of the nozzle was found to be related to the range and number of small-pressure fluctuations near the wall. A larger number of small-pressure fluctuations and a larger range caused faster pressure of the jet water column to decay along the axial direction. Rectification with a concentrated effect also slowed down the attenuation velocity of the jet-water-column pressure between the concentration point and the nozzle. The variation rule of shock pressure with range was further determined experimentally. We found that the shock pressure of jet water column initially increased within a short distance and then decreased rapidly. The effective shock range of the thin-type streamlined nozzle in air was 1.417 times that of the conical nozzle, and the effective reaming area was 1.104 times greater. Thus, the effect of reaming was effectively improved. The length of the water column at high pressure was larger than that of the conical nozzle, and the shock efficiency was relatively high.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3