Model-Based Testing Applied to Software Components of Satellite Simulators

Author:

Silva Paulo Diego Barbosa da1,Ambrosio Ana Maria2ORCID,Villani Emilia1ORCID

Affiliation:

1. Aeronautics Institute of Technology (ITA), São José dos Campos, Brazil

2. National Institute for Space Research, São José dos Campos, Brazil

Abstract

Operational simulators have a fundamental role in space programs. During a satellite operation, these simulators are essential for validating critical manoeuvres, testing new on-board software versions, and supporting the diagnosis of anomalies. With the purpose of reusing the operational simulators, the Brazilian National Institute for Space Research has proposed a new standard for the specification of the components that must be integrated in their in-house developed simulators. The new standard describes the behaviour of satellite subsystems using cause-effect tables that relate telecommands, electrical switches, equipment working states, energy consumption, telemetries, and operating modes of the subsystem. Using this new standard as input, this work proposes an approach that merges model-based testing and model checking to verify the correct implementation of new components in the satellite simulator. The verification approach consists of extracting state machines from the cause-effect tables and used it to automatically derive a test case suite. In order to validate the proposal, we applied it to three different satellite subsystems and assessed the results obtained from the test campaigns. In all the three cases, the proposed approach identified errors in the simulator components that were not initially detected by the traditional testing approach used at the Brazilian National Institute for Space Research.

Funder

INPE

Publisher

Hindawi Limited

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Multi-channel Payload Data Simulator Based on TLK2711;2021 IEEE 15th International Conference on Electronic Measurement & Instruments (ICEMI);2021-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3